Nonsmooth Newton’s Method and Semidefinite Optimization
نویسنده
چکیده
We introduce basic ideas of a nonsmooth Newton’s method and its application in solving semidefinite optimization (SDO) problems. In particular, the method can be used to solve both linear and nonlinear semidefinite complementarity problems. We also survey recent theoretical results in matrix functions and stability of SDO that are stemed from the research on the matrix form of the nonsmooth Newton’s method.
منابع مشابه
Quadratic Convergence of a Nonsmooth Newton-Type Method for Semidefinite Programs Without Strict Complementarity
We consider a Newton-type method for the solution of semidefinite programs. This Newton-type method is based on a semismooth reformulation of the semidefinite program as a nonsmooth system of equations. We establish local quadratic convergence of this method under a linear independence assumption and a slightly modified nondegeneracy condition. In contrast to previous investigations, however, t...
متن کاملA Squared Smoothing Newton Method for Nonsmooth Matrix Equations and Its Applications in Semidefinite Optimization Problems
We study a smoothing Newton method for solving a nonsmooth matrix equation that includes semidefinite programming and the semidefinite complementarity problem as special cases. This method, if specialized for solving semidefinite programs, needs to solve only one linear system per iteration and achieves quadratic convergence under strict complementarity and nondegeneracy. We also establish quad...
متن کاملErratum: Global Convergence of a Nonsmooth Newton Method for Control-State Constrained Optimal Control Problems
Abstract. We investigate a nonsmooth Newton’s method for the numerical solution of optimal control problems subject to mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and nonsmooth equation in appropriate Banach spaces. Thi...
متن کاملGlobal Convergence of a Nonsmooth Newton Method for Control-State Constrained Optimal Control Problems
We investigate a nonsmooth Newton’s method for the numerical solution of optimal control problems subject to mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and nonsmooth equation in appropriate Banach spaces. This nonlinea...
متن کاملNewton's Method for Solving Inclusions Using Set-Valued Approximations
Results on stability of both local and global metric regularity under set-valued perturbations are presented. As an application, we study (super)linear convergence of a Newtontype iterative process for solving generalized equations. We investigate several iterative schemes such as the inexact Newton’s method, the nonsmooth Newton’s method for semismooth functions, the inexact proximal point alg...
متن کامل